iqm.benchmarks.randomized_benchmarking.eplg.eplg.EPLGConfiguration#
- class iqm.benchmarks.randomized_benchmarking.eplg.eplg.EPLGConfiguration(*, benchmark: ~typing.Type[~iqm.benchmarks.benchmark_definition.Benchmark] = <class 'iqm.benchmarks.randomized_benchmarking.eplg.eplg.EPLGBenchmark'>, shots: int = 256, max_gates_per_batch: int | None = None, max_circuits_per_batch: int | None = None, calset_id: str | None = None, routing_method: ~typing.Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'] = 'sabre', physical_layout: ~typing.Literal['fixed', 'batching'] = 'fixed', use_dd: bool | None = False, dd_strategy: ~iqm.iqm_client.models.DDStrategy | None = None, drb_depths: ~typing.Sequence[int], drb_circuit_samples: int, custom_qubits_array: ~typing.Sequence[~typing.Tuple[int, int]] | None = None, chain_length: int | None = None, chain_path_samples: int | None = None, num_disjoint_layers: int | None = None, max_hamiltonian_path_tries: int | None = None, calibration_url: str | None = None)#
Bases:
BenchmarkConfigurationBase
EPLG Configuration
- Parameters:
shots (int) –
max_gates_per_batch (int | None) –
max_circuits_per_batch (int | None) –
calset_id (str | None) –
routing_method (Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none']) –
physical_layout (Literal['fixed', 'batching']) –
use_dd (bool | None) –
dd_strategy (DDStrategy | None) –
drb_circuit_samples (int) –
chain_length (int | None) –
chain_path_samples (int | None) –
num_disjoint_layers (int | None) –
max_hamiltonian_path_tries (int | None) –
calibration_url (str | None) –
- custom_qubits_array#
The custom qubits array to consider; this corresponds to a Sequence of Tuple pairs of qubits. * If not specified, will proceed to generate linear chains at random, selecting the one with the highest total 2Q gate fidelity. * Default is None.
- chain_length#
The length of a linear chain of 2Q gates to consider, corresponding to the number of qubits, if custom_qubits_array not specified. * Default is None: assigns the number of qubits in the backend minus one.
- Type:
Optional[int]
- chain_path_samples#
The number of chain path samples to consider, if custom_qubits_array not specified. * Default is None: assigns 20 path samples (arbitrary).
- Type:
- num_disjoint_layers#
The number of disjoint layers to consider. * Default is None: assigns 2 disjoint layers (arbitrary).
- Type:
Optional[int]
- max_hamiltonian_path_tries#
The maximum number of tries to find a Hamiltonian path. * Default is None: assigns 10 tries (arbitrary).
- Type:
Optional[int]
- calibration_url#
The URL of the IQM station to retrieve calibration data from. * It must be specified if custom_qubits_array is not specified. * Default is None - raises an error if custom_qubits_array is not specified.
- Type:
Optional[str]
Attributes
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
benchmark
shots
max_gates_per_batch
max_circuits_per_batch
calset_id
routing_method
physical_layout
use_dd
dd_strategy
Methods
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].