iqm.benchmarks.randomized_benchmarking.eplg.eplg.EPLGBenchmark#
- class iqm.benchmarks.randomized_benchmarking.eplg.eplg.EPLGBenchmark(backend_arg: IQMBackendBase | str, configuration: EPLGConfiguration)#
Bases:
Benchmark
EPLG estimates the layer fidelity of native 2Q gate layers
Attributes
name
Methods
add_all_meta_to_dataset
(dataset)Adds all configuration metadata and circuits to the dataset variable
analysis_function
(run)EPLG analysis function
execute
(backend)Execute the EPLG Benchmark
Validates the custom qubits array input .
Validates inputs for chain sampling.
- Parameters:
backend_arg (IQMBackendBase | str) –
configuration (EPLGConfiguration) –
- static analysis_function(run: BenchmarkRunResult) BenchmarkAnalysisResult #
EPLG analysis function
- Parameters:
run (BenchmarkRunResult) – The result of the benchmark run.
- Returns:
AnalysisResult corresponding to DRB.
- Return type:
- add_all_meta_to_dataset(dataset: Dataset)#
Adds all configuration metadata and circuits to the dataset variable
- Parameters:
dataset (xr.Dataset) – The xarray dataset
- validate_custom_qubits_array()#
Validates the custom qubits array input .
- validate_random_chain_inputs()#
Validates inputs for chain sampling.
- Raises:
ValueError – If the chain inputs are beyond general or EPLG criteria.
- execute(backend: IQMBackendBase) Dataset #
Execute the EPLG Benchmark
- Parameters:
backend (IQMBackendBase) –
- Return type:
Dataset