iqm.benchmarks.randomized_benchmarking.mirror_rb.mirror_rb.generate_pauli_dressed_mrb_circuits#
- iqm.benchmarks.randomized_benchmarking.mirror_rb.mirror_rb.generate_pauli_dressed_mrb_circuits(qubits: List[int], pauli_samples_per_circ: int, depth: int, backend_arg: IQMBackendBase | str, density_2q_gates: float = 0.25, two_qubit_gate_ensemble: Dict[str, float] | None = None, clifford_sqg_probability=1.0, sqg_gate_ensemble: Dict[str, float] | None = None, qiskit_optim_level: int = 1, routing_method: str = 'basic', simulation_method: Literal['automatic', 'statevector', 'stabilizer', 'extended_stabilizer', 'matrix_product_state'] = 'automatic') Dict[str, List[IQMCircuit]] #
- Samples a mirror circuit and generates samples of “Pauli-dressed” circuits,
where for each circuit, random Pauli layers are interleaved between each layer of the circuit
- Parameters:
qubits (List[int]) – the qubits of the backend
pauli_samples_per_circ (int) – the number of pauli samples per circuit
depth (int) – the depth (number of canonical layers) of the circuit
backend_arg (IQMBackendBase | str) – the backend
density_2q_gates (float) – the expected density of 2Q gates
two_qubit_gate_ensemble (Optional[Dict[str, float]]) – A dictionary with keys being str specifying 2Q gates, and values being corresponding probabilities. * Default is None.
clifford_sqg_probability (float) – Probability with which to uniformly sample Clifford 1Q gates. * Default is 1.0.
sqg_gate_ensemble (Optional[Dict[str, float]]) – A dictionary with keys being str specifying 1Q gates, and values being corresponding probabilities. * Default is None.
qiskit_optim_level (int) – Qiskit transpiler optimization level. * Default is 1.
routing_method (str) – Qiskit transpiler routing method. * Default is “basic”.
simulation_method (Literal["automatic", "statevector", "stabilizer", "extended_stabilizer", "matrix_product_state"]) – Qiskit’s Aer simulation method * Default is “automatic”.
- Returns:
Dict[str, List[QuantumCircuit]]
- Return type:
Dict[str, List[IQMCircuit]]