iqm.benchmarks.randomized_benchmarking.clifford_rb.clifford_rb.CliffordRBConfiguration#
- class iqm.benchmarks.randomized_benchmarking.clifford_rb.clifford_rb.CliffordRBConfiguration(*, benchmark: ~typing.Type[~iqm.benchmarks.benchmark_definition.Benchmark] = <class 'iqm.benchmarks.randomized_benchmarking.clifford_rb.clifford_rb.CliffordRandomizedBenchmarking'>, shots: int = 256, max_gates_per_batch: int | None = None, max_circuits_per_batch: int | None = None, calset_id: str | None = None, routing_method: ~typing.Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'] = 'sabre', physical_layout: ~typing.Literal['fixed', 'batching'] = 'fixed', use_dd: bool | None = False, dd_strategy: ~iqm.iqm_client.models.DDStrategy | None = None, qubits_array: ~typing.Sequence[~typing.Sequence[int]], sequence_lengths: ~typing.Sequence[int], num_circuit_samples: int, parallel_execution: bool = False)#
Bases:
BenchmarkConfigurationBase
Clifford RB configuration.
- Parameters:
shots (int) –
max_gates_per_batch (int | None) –
max_circuits_per_batch (int | None) –
calset_id (str | None) –
routing_method (Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none']) –
physical_layout (Literal['fixed', 'batching']) –
use_dd (bool | None) –
dd_strategy (DDStrategy | None) –
num_circuit_samples (int) –
parallel_execution (bool) –
- sequence_lengths#
The length of Cliffords sequences with which to execute benchmark.
- Type:
Sequence[int]
- parallel_execution#
Whether the benchmark is executed on all qubits in parallel or not. * Default is False.
- Type:
Attributes
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
max_gates_per_batch
max_circuits_per_batch
calset_id
routing_method
physical_layout
use_dd
dd_strategy
Methods
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].