iqm.benchmarks.quantum_volume.quantum_volume.QuantumVolumeConfiguration#

class iqm.benchmarks.quantum_volume.quantum_volume.QuantumVolumeConfiguration(*, benchmark: ~typing.Type[~iqm.benchmarks.benchmark_definition.Benchmark] = <class 'iqm.benchmarks.quantum_volume.quantum_volume.QuantumVolumeBenchmark'>, shots: int = 256, max_gates_per_batch: int | None = None, max_circuits_per_batch: int | None = None, calset_id: str | None = None, routing_method: ~typing.Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none'] = 'sabre', physical_layout: ~typing.Literal['fixed', 'batching'] = 'fixed', use_dd: bool | None = False, dd_strategy: ~iqm.iqm_client.models.DDStrategy | None = None, num_circuits: int, num_sigmas: int = 2, choose_qubits_routine: ~typing.Literal['custom'] = 'custom', custom_qubits_array: ~typing.Sequence[~typing.Sequence[int]], qiskit_optim_level: int = 3, optimize_sqg: bool = True, rem: bool = True, mit_shots: int = 1000)#

Bases: BenchmarkConfigurationBase

Quantum Volume configuration.

Parameters:
  • benchmark (Type[Benchmark]) –

  • shots (int) –

  • max_gates_per_batch (int | None) –

  • max_circuits_per_batch (int | None) –

  • calset_id (str | None) –

  • routing_method (Literal['basic', 'lookahead', 'stochastic', 'sabre', 'none']) –

  • physical_layout (Literal['fixed', 'batching']) –

  • use_dd (bool | None) –

  • dd_strategy (DDStrategy | None) –

  • num_circuits (int) –

  • num_sigmas (int) –

  • choose_qubits_routine (Literal['custom']) –

  • custom_qubits_array (Sequence[Sequence[int]]) –

  • qiskit_optim_level (int) –

  • optimize_sqg (bool) –

  • rem (bool) –

  • mit_shots (int) –

benchmark#

QuantumVolumeBenchmark

Type:

Type[Benchmark]

num_circuits#

The number of circuits to use. * Should be at least 100 for a meaningful QV experiment.

Type:

int

num_sigmas#

The number of sample standard deviations to consider with for the threshold criteria. * Default by consensus is 2

Type:

int

choose_qubits_routine#

The routine to select qubit layouts. * Default is “custom”.

Type:

Literal[“custom”]

custom_qubits_array#

The physical qubit layouts to perform the benchmark on. * Default is [[0, 2]].

Type:

Optional[Sequence[Sequence[int]]]

qiskit_optim_level#

The Qiskit transpilation optimization level. * Default is 3.

Type:

int

optimize_sqg#

Whether Single Qubit Gate Optimization is performed upon transpilation. * Default is True.

Type:

bool

routing_method#

The Qiskit transpilation routing method to use. * Default is “sabre”.

Type:

Literal[“basic”, “lookahead”, “stochastic”, “sabre”, “none”]

physical_layout#

Whether the coupling map is restricted to qubits in the input layout or not. - “fixed”: Restricts the coupling map to only the specified qubits. - “batching”: Considers the full coupling map of the backend and circuit execution is batched per final layout. * Default is “fixed”

Type:

Literal[“fixed”, “batching”]

rem#

Whether Readout Error Mitigation is applied in post-processing. When set to True, both results (readout-unmitigated and -mitigated) are produced. - Default is True.

Type:

bool

mit_shots#

The measurement shots to use for readout calibration. * Default is 1_000.

Type:

int

Attributes

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

benchmark

num_circuits

num_sigmas

choose_qubits_routine

custom_qubits_array

qiskit_optim_level

optimize_sqg

rem

mit_shots

shots

max_gates_per_batch

max_circuits_per_batch

calset_id

routing_method

physical_layout

use_dd

dd_strategy

Methods

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].